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Abstract. We review the characterization of  conformally flat structures on a com- 
pact 3-manifold as the critical points o f  the Chern-Simons functional on Con- 
formal Superspace. As a matter of  fact, the formulas for the first and second 
variation of  the Chern-Sbnons functional can essentially be found in the existing 
literature but we state the results more explicitly here and add some new remarks. 
In particular, pursuing our previous study [17], we want to keep track o f  the spe- 
cial properties of  the DeWitt metric. 

1. INTRODUCTION 

Let M be a compact oriented manifold of dimension 3. Every 3-manifold 

admits a unique smooth structure [ 16]. Let ~ :  be the algebra of  real functions 

on M, ~ the Weyl group of positive functions with pointwise multiplication, 

X the Lie  algebra of vector fields on M, ~2P the space of p-forms on M, ~9 ~ the 

space of symmetric bilinear forms on M, J/ t  the open cone of  Riemannian metrics 

of  M in i f ,  and ~ the group of diffeomorphisms of M. We shall not make explicit 

the musical isomorphisms between X and ~1 via g. By another abuse of notation, 

we shall not distinguish between vector fields and their pointwise values. 
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Now ~ acts on J / v i a  the pull-back operation. In General Relativity, the 

resulting Moduli Space of Riemannian structures d/// /~ is called Superspace 

[7, 15]. On the other hand, # / 'ac ts  on ~ / b y  pointwise multiplication. Let us 

define the group c~ of  conformeomorphisms of M as the semi-direct product 

= ~ K ~¢~. The corresponding Moduli Space of conformal structures is called 

Conformal Superspace [8]. Both Superspace and Conformal Superspace are 

stratified orbifolds rather than genuine infinite-dimensional manifolds [3, 6, 7]. 

Superspace is the configuration space of the Hamiltonian description of Gene- 

ral Relativity. In this context, it appears that the natural metric on Superspace 

is the DeWitt (= DW) metric (. , .)(o w) which is defined as follows [17]. Iden- 

tifying the tangent space of J4  at a generic metric g with 5¢, for h, k E 5P one 

writes 

(1.1) (h, k )  (DW) = g - 2(h ® k) - g -  1 (h) g -  1 (k) -g  

for the local DeWitt scalar product. The DeWitt metric is the corresponding 

global scalar product which is obtained by integrating (1.1) with respect to the 

volume element of g. Actually the DeWitt "metric" is only a non-degenerate 

-invariant symmetric bilinear form on J [ .  Dropping the latter twisting term 

on the right hand side of  (1.1), we recover the canonical positive-definite L 2 

metric (. , .) on ,~'. 

For a given g ~ d//, let V denote the Levi-Civita connection. We use the con- 

vention A = -- 2i Vi ~7i for the brute Laplacian. The divergence of a vector 

field X is given by 5X = -- Y~i ~7t Xi" Let d stand for the exterior derivative on 

M. The Hessian Hess = V d maps ~ - *  5(. 

We may couple X7 and d as follows. Let E be any vector bundle on M. We 

consider the differential p-forms on M with values in E, i.e., the sections of 

A p M ® E. We define the exterior differential d x7 associated with ~7 by the fol- 

lowing formula. For any section c~ of AP M ® E, d V a is the section of AP + 1M ® E 

such that for vector fields X 0 . . . .  Xp 

(dVo 0 (X o . . . . .  X )  = 

( -  l / W ;  o . . . . .  2 t . . . . .  x ) )  
i 

+ Z ( -  1)'+'# ° ~ ( [ X r X s ] ' X o  . . . . .  f( i  . . . .  , f ( !  . . . . .  X ) .  

The usual Riemann curvature tensor R o f g  is given by the fornmla 

R x , Y s  = - -  dV(dVs)  (X ,  Y)  
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for two vector fields X, Y G × and a section s of E = TM, the tangent bundle. 

Write P for the Riccicurvature and r for the scalar curvature ofg .  

Let 6" stand for the differential operator from X to St which to a vector g 

field X associates 61X= 1/2 Lxg. Write 5g (resp. 5CDW)) for the formal adjoint 
g 

of 6" with respect to the canonical metric (resp. the DeWitt metric). Then 6 g g 

is just the usual divergence, and 8 C°w) = ~ + dg-1 (.). The well-known decom- g g 

position theorem of Berger and Ebin [2] also holds for the DeWitt metric 

S t =  Im ~ • Ker 6(DW) 
g 

Geometrically, this means that the tangent space of J g  at g splits as an ortho- 

gonal sum with respect to the DeWitt metric. The image of ~* contains the fun- g 

damental or vertical vector fields which are tangent to the orbit of  ~ at g whereas 

the kernel of ~(Dw) consists of DeWitt horizontal vectors which are tangent g 
to a transversal slice at g. 

The gradient of any smooth ~-invariant functional with respect to the DeWitt 

metric on J ¢  is automatically DeWitt horizontal. For instance, minus the DeWitt 

gradient of the total scalar curvature functional yields a canonical DeWitt hori- 

zontal vector field on J / ,  to be called the DeWitt Einstein tensor 

1 
E(DW) =P--  -~ rg. 

This is just the DeWitt twisting of the classical Einstein tensor 

1 
E = p - - ~  rg. 

Checking the horizontality directly amounts to applying the Bianchi identity. 

Let us pause to introduce the Kulkarni-Nomizu product ® of two symmetric 

bilinear forms h and k 

( h ® k ) ( X ,  Y , Z , T ) =  

= h(X, Z) k(Y, T) + h(Y, T) k(X, Z) 

-h (X ,  T) k(Y, Z) - 'h(Y, Z) k(X, T). 

Remarkably, all curvature in 3 dimensions is given by 

(1.2) .R = E (Dw) ~) g. 

On the other hand, let us denote by (h o k)q = N/(h H k/./+ h/l/d/) the symme- 

tric product o : S t x St -~ St. 

Taking into account the action of the Weyl group, the Berger-Ebin decom- 
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position can be refined so as to yield the York decomposition [8, 15, 21, 22] 

ha= I m P ~ e  Sac • b ¢ r r  
g • 

Here P~X = 5ffX + I/3 (SX) • g for X ~ × is the linearization of the action 

of the conformeomorphism group or the trace-free part of/i*. g 
The image of P~ may again be called vertical. In General Relativity literature, 

the component S ac consisting of the pure trace directions ~-.  g is called lon- 

gitudinal whereas the vectors in the remaining part ~ T T  are referred to as the 

transverse traceless directions. A deformation h E ~9 e of a metric g E .//,/is trans- 

verse traceless if and only if it is both divergence-free (Seh = 0) and trace-free 

(g-1  (h) = 0). These are the physically interesting deformations which change 

the conformal structure in Conformal Superspace. 

On a 3-manifold, there exist a canonical transverse traceless tensor called 

the York curvature which we want to describe next. 

Obviously, any symmetric bilinear form h E S p can be thought as an ele- 

ment of ~21 ® I21 . We shall denote this identification by a tilde, h ~ I21 ® I21 . 

In particular, it makes sense to write d v f~ E ~2 ® ~1.  The bilinear forms in the 

kernel of this operation are called Codazzi tensors. 

Let * be the Hodge star of g. The codifferential ~v = _ . d v . coincides 

on ~ with the divergence/i . The York curvature Y is given by 
g 

Y = ,  d V ~ ( D W ) .  

This is indeed a symmetric and transverse traceless 2-tensor. 

THEOREM 1.3. (LOVELOCK [13]). On a 3-manifold,  the York  curvature is 

the unique  transverse traceless s y m m e t r i c  bilinear f o r m  which is a concomi tan t  

o f  the  Riemannian metr ic  and its derivatives up to order 3. • 

The York curvature arose in a study of the initial-value problem in General 

Relativity [14, 15, 21, 22]. On the other hand, the 3-tensor containing third 

order derivatives in the Riemannian metric 

C = d v /~  (z)w) 

is well-known in mathematics literature. This is the classical Cotton tensor [5] 

whose non-vanishing is the obstruction for a Riemannian 3-manifold of being 

conformally flat. In higher dimensions, the analogous obstruction is the non- 

vanishing of the Weyl tensor, a component in the orthogonal decomposition 

of the Riemann curvature tensor. 

Recall that conformal flatness means that every point of (M, g) admits a 

neighbourhood where g can be conformally rescaled to be flat. First examples 
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of such manifolds are given by constant curvature manifolds and by Riemannian 

products of  two constant curvature manifolds with opposite curvature signs. 

Moreover, a connected sum of two conformally flat manifolds again admits 

a conformally flat structure. As for simply-connected examples, there only 

exists the canonical sphere up to conformal equivalence (Kuiper [11 ]). 

Furthermore, the Cotton tensor itself is a conformal invariant; in other words, 

it is fully invariant under a conformal rescaling g ~ X • g with ;k E #/ ' .  On the 

other hand, the Hodge star scales with a certain conformal weight so that the 

York curvature will be merely a conformal covariant, more precisely 

Y(X. g) = ~k- 1/2 y(g). 

The following new observation gives a certain correspondence between the 

tangent spaces of Superspace and Conformal Superspace at a constant curva- 

ture structure. 

PROPOSITION 1.4. f f  h E b ~ is DeWitt horizontal with respect, to a metric 

g, then • d~h is symmetric and traceless. Moreover, i f  h ~ 6F is DelCitt hori- 

zontal with respect to a constant curvature metric g, then • d ~7 h is transverse 

traceless. 

Proof  To prove the first statement, we work in local coordinates separating 

the target index to the right by a comma. Supposing that h is DeWitt horizon- 

tal, we find for instance 

(* d~h)l ,2 = ~ 2  h32 -~73 h22 = ~ 3  hl l  - V 1  h31 = (* d~Th)2,1 

so that * d~Th is symmetric. Moreover, the image of  • d ~7 is always traceless. 

To prove the second assertion, we observe that 

5g * dV h = - - *  d v * * d V h =  * R . h .  

In local coordinates, using (I .2), this works out as 

i 

The other components are found by cyclical permutation of indices. Asking 

them all to vanish is equivalent to asking the Ricci curvature to be proportional 

to the metric. This is the Einstein condition which in 3 dimensions is equivalent 

with constant curvature by (1.2). • 
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2. CONFORMALLY FLAT 3-MANIFOLDS AS THE CRITICAL POINTS OF 

THE CHERN-SIMONS FUNCTIONAL 

The gradient of  any smooth functional on Conformal Superspace is automa- 

tically transverse traceless. For instance, we might try to pick the L 1 norm 

of the Cotton tensor. This is indeed a conformally invariant scalar. However, 

it is not smooth because of the presence of a square root. It is natural to ask 

as in [13] whether the York curvature arises as the gradient of some smooth 

functional. The answer in the affirmative was given by Chern and Simons [4] 

whose results imply that the York curvature is the gradient of  a functional on 

Conformal Superspace which arises in their theory of secondary characteristic 
classes. 

7t 

Consider the SO(3) oriented frame bundle F(M) --> M on M equipped with 

the Levi-Civita connection 1-form 0. The entries of  0 are just the classical Chri- 

stoffel symbols. The first non-trivial Chern-Simons transgressive polynomial 

is the 3-form on F(M) 

- -  Trace 0 3 + 0 d 0  TP 1 (0) = 47r 2 

where the trace is taken in the Lie algebra of SO(3). 

Recall that according to a classical theorem of Stiefel [19], every 3-manifold 
f f  

is parallelizable, i.e., the bundle F(M) ~ M admits a global gauge. Fixing any 

global framing i~', the Chern-Simons polynomial will descend to M and we 

may consider the circle-valued functional 

~b(O) = -~ TPI(O) mod Z. 

The functional ~ is not as such a topological invariant of  3-manifolds although 

it comes from the theory of characteristic classes. In fact, the right way to cap- 

ture the topological information carried by the Chern-Simons polynomials is to 

build a suitably defined K-theory for them [ 18]. 

The following facts on the functional cb are established in [4] with slightly 

different terminology: 

THEOREM 2.1. ~ is well-defined; that is, ¢b is independent o f  the choice o f  

the trivialization ~ .  Moreover, dp is a conformal invariant, hence a functional 

on Conformal Superspace. The gradient o f  ~b exists and is given by 
1 

g r a d ~ = - - ~  Y. 
8rr 2 
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Thus, the critical points of q~ are precisely the conformaUy flat 3-manifolds. 

We want to pu t on record the second variation formula for • in a less entangled 

notation than what occurs in [10], page 154. From standard variational for- 

mulas we deduce: 

PROPOSITION 2.2. The Hessian o f  ~b on two deformations h, k E o qul'l" at a 

critical point g is given by the formula 

1 
Hess ~(h, k) = -- --8~.-"'r (*((dV)'(h) E (Dw) + dV (E(°W)) ' (h )), k> 

where, in normal coordinates, 

= . ,~ ~ o w )  [it, vl(h)) ((dV)'(h)E(DW))q, l y~. (E. (Dw) [1l, v] (h) - 7v 
V 

with 

1 
- -  h 0),  [u~,2~](h)= 2 (D h ~ + D  e h  - D  r 

and 

1 3 3 3 
--2 A h  + - -  ( 0 ° h ) -  ( o , h ) g g  rh. (E(°W)) ' (h) = -- - - -  

2 4 4 

The flat torus is easily seen to be non-stable. Lafontaine [12] investigates 

the stability of compact hyperbolic structures of  dimension at least 3 viewed 

as conformally flat structures. He identifies their deformations as the traceless 

Codazzi tensors. Moreover, the following result contrasts with the well-known 

Mostow Rigidity Theorem. 

\ 

THEOREM 2.3 (LAFONTAINE [ 12]). I ra  compact hyperbolic manifold admits 

a totally geodesic hypersurface then it is not  rigid viewed as a conforrnally flat 

manifold. • 

The geometric idea of the proof of  the above is due to Apanasov. His recent 

work [ 1 ] gives new evidence for his conjecture that the subspace of conformally 

flat structures in Conformat Superspace is disconnected. He constructs an exotic 

conformally flat structure which cannot be approximated by any known defor- 

mations of the hyperbolic structure. 



116 OSMO PEKONEN 

3. PERSPECTIVES 

This paper was motivated by the recent work of Floer [9] who constructed 

eight new homology invariants for homology 3-spheres by means of  a Morse 

theoretic study of the Chern-Simons functional on the space of connections 

of a principal SU(2) bundle over the 3-manifold under study. Above we have 

provided a preliminary sketch for a potential extension of  his deep results to a 

purely Riemannian context,  in other words, passing from gauge theory to gra- 

vitation. In another deep recent work, Witten [20] found the conformally flat 

structures as the solutions of  his theory of 2 + 1 dimensional Chern-Simons 

gravity. His action principle is just ~}. The author thanks Professors B. Apanasov, 

J.P. Bourguignon, A. Floer, J. Lafontaine, and I.M. Singer for their suggestions 

for further research on ~b. 
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